You're not a doctor who has studied the virus. Therefore you are not qualified to tell anyone how the virus works based on the early findings of a minority of cases.
Also, you are not basing this on evidence (which you are not qualified to evaluate in the first place), but rather on selective reading of news reports, because apparently you are on a mission to prove something.
Here, I'll demonstrate. The very same article you've been reading, but with a different emphasis.
Quote:
(
https://www.sciencemag.org/news/2020/04/how-does-coronavirus-kill-clinicians-trace-ferocious-rampage-through-body-brain-toes)
Understanding the rampage could help the doctors on the front lines treat the
fraction of infected people who become desperately and sometimes mysteriously ill. Does a dangerous, newly observed tendency to blood clotting transform some mild cases into life-threatening emergencies? Is an overzealous immune response behind the worst cases, suggesting treatment with immune-suppressing drugs could help? What explains the startlingly low blood oxygen that some physicians are reporting in patients who nonetheless are not gasping for breath? “Taking a systems approach may be beneficial as we start thinking about therapies,” says Nilam Mangalmurti, a pulmonary intensivist at the Hospital of the University of Pennsylvania (HUP).
What follows is a snapshot of the fast-evolving understanding of how the virus attacks cells around the body, especially in the roughly 5% of patients who become critically ill. Despite the more than 1000 papers now spilling into journals and onto preprint servers every week,
a clear picture is elusive, as the virus acts like no microbe humanity has ever seen.
Without larger, prospective controlled studies that are only now being launched, scientists must pull information from small studies and case reports, often published at warp speed and not yet peer reviewed. “We need to keep a very open mind as this phenomenon goes forward,” says Nancy Reau, a liver transplant physician who has been treating COVID-19 patients at Rush University Medical Center. “We are still learning.”
[...]
Normally, oxygen crosses the alveoli into the capillaries, tiny blood vessels that lie beside the air sacs; the oxygen is then carried to the rest of the body. But as the immune system wars with the invader, the battle itself disrupts this healthy oxygen transfer. Front-line white blood cells release inflammatory molecules called chemokines, which in turn summon more immune cells that target and kill virus-infected cells, leaving a stew of fluid and dead cells—pus—behind.
This is the underlying pathology of pneumonia, with its corresponding symptoms: coughing; fever; and rapid, shallow respiration. Some COVID-19 patients recover, sometimes with no more support than oxygen breathed in through nasal prongs.
But others deteriorate, often quite suddenly, developing a condition called acute respiratory distress syndrome (ARDS). Oxygen levels in their blood plummet and they struggle ever harder to breathe. On x-rays and computerized tomography scans, their lungs are riddled with white opacities where black space—air—should be. Commonly, these patients end up on ventilators. Many die. Autopsies show their alveoli became stuffed with fluid, white blood cells, mucus, and the detritus of destroyed lung cells (see graphic).
In serious cases, SARS-CoV-2 lands in the lungs and can do deep damage there. But the virus, or the body's response to it, can injure many other organs. Scientists are just beginning to probe the scope and nature of that harm.
[...]
Some studies have shown elevated levels of these inflammation-inducing cytokines in the blood of hospitalized COVID-19 patients. “The real morbidity and mortality of this disease is probably driven by this out of proportion inflammatory response to the virus,” says Jamie Garfield, a pulmonologist who cares for COVID-19 patients at Temple University Hospital.
But others aren't convinced. “
There seems to have been a quick move to associate COVID-19 with these hyperinflammatory states. I haven't really seen convincing data that that is the case,” says Joseph Levitt, a pulmonary critical care physician at the Stanford University School of Medicine.
He's also worried that efforts to dampen a cytokine response could backfire. Several drugs targeting specific cytokines are in clinical trials in COVID-19 patients. But Levitt fears those drugs may suppress the immune response that the body needs to fight off the virus. “There's a real risk that we allow more viral replication,” Levitt says.
[...]
Scientists are struggling to understand exactly what causes the cardiovascular damage. The virus may directly attack the lining of the heart and blood vessels, which, like the nose and alveoli, are rich in ACE2 receptors.
Or perhaps lack of oxygen, due to the chaos in the lungs, damages blood vessels. Or a cytokine storm could ravage the heart as it does other organs.
“We're still at the beginning,” Krumholz says. “We really don't understand who is vulnerable, why some people are affected so severely, why it comes on so rapidly ... and why it is so hard [for some] to recover.”[...]
“The lung is the primary battle zone. But a fraction of the virus possibly attacks the kidney. And as on the real battlefield, if two places are being attacked at the same time, each place gets worse,” says Hongbo Jia, a neuroscientist at the Chinese Academy of Sciences's Suzhou Institute of Biomedical Engineering and Technology and a co-author of that study.